Probing the Molecular Mechanism of Human Soluble Guanylate Cyclase Activation by NO in vitro and in vivo

نویسندگان

  • Jie Pan
  • Hong Yuan
  • Xiaoxue Zhang
  • Huijuan Zhang
  • Qiming Xu
  • Yajun Zhou
  • Li Tan
  • Shingo Nagawa
  • Zhong-Xian Huang
  • Xiangshi Tan
چکیده

Soluble guanylate cyclase (sGC) is a heme-containing metalloprotein in NO-sGC-cGMP signaling. NO binds to the heme of sGC to catalyze the synthesis of the second messenger cGMP, which plays a critical role in several physiological processes. However, the molecular mechanism for sGC to mediate the NO signaling remains unclear. Here fluorophore FlAsH-EDT2 and fluorescent proteins were employed to study the NO-induced sGC activation. FlAsH-EDT2 labeling study revealed that NO binding to the H-NOX domain of sGC increased the distance between H-NOX and PAS domain and the separation between H-NOX and coiled-coil domain. The heme pocket conformation changed from "closed" to "open" upon NO binding. In addition, the NO-induced conformational change of sGC was firstly investigated in vivo through fluorescence lifetime imaging microscopy. The results both in vitro and in vivo indicated the conformational change of the catalytic domain of sGC from "open" to "closed" upon NO binding. NO binding to the heme of H-NOX domain caused breaking of Fe-N coordination bond, initiated the domain moving and conformational change, induced the allosteric effect of sGC to trigger the NO-signaling from H-NOX via PAS &coiled-coil to the catalytic domain, and ultimately stimulates the cyclase activity of sGC.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vivo control of soluble guanylate cyclase activation by nitric oxide: a kinetic analysis.

Free nitric oxide (NO) activates soluble guanylate cyclase (sGC), an enzyme, within both pulmonary and vascular smooth muscle. sGC catalyzes the cyclization of guanosine 5'-triphosphate to guanosine 3',5'-cyclic monophosphate (cGMP). Binding rates of NO to the ferrous heme(s) of sGC have been measured in vitro. However, a missing link in our understanding of the control mechanism of sGC by NO i...

متن کامل

Carnosine as a regulator of soluble guanylate cyclase.

The molecular mechanism of the participation of carnosine in the functioning of soluble guanylate cyclase is discussed. It is shown that carnosine inhibits the activation of soluble guanylate cyclase by sodium nitroprusside and a derivative of furoxan--1,2,5-oxadiazolo-trioxide (an NO donor). However, carnosine has no effect on stimulation of the enzyme by a structural analog of the latter comp...

متن کامل

Activation of soluble guanylate cyclase by NO-hemoproteins involves NO-heme exchange. Comparison of heme-containing and heme-deficient enzyme forms.

The mechanism of activation of soluble guanylate cyclase purified from bovine lung by high molecular weight, nitrosyl-hemoprotein complexes is reported. Heme-containing, heme-deficient, and heme-reconstituted forms of guanylate cyclase were studied. Nitric oxide (NO) and nitroso compounds activated heme-containing and heme-reconstituted enzymes (over 50-fold), with an accompanying shift in the ...

متن کامل

Mapping Soluble Guanylyl Cyclase and Protein Disulfide Isomerase Regions of Interaction

Soluble guanylyl cyclase (sGC) is a heterodimeric nitric oxide (NO) receptor that produces cyclic GMP. This signaling mechanism is a key component in the cardiovascular system. NO binds to heme in the β subunit and stimulates the catalytic conversion of GTP to cGMP several hundred fold. Several endogenous factors have been identified that modulate sGC function in vitro and in vivo. In previous ...

متن کامل

Free nitric oxide diffusion in the bronchial microcirculation.

Theoretical mass transfer rates and concentration distributions were determined for transient diffusion of free nitric oxide (NO) generated in vivo from vascular endothelial cells. Our analytical framework is typical of the bronchial circulation in the human pulmonary system but is applicable to the microvascular circulation in general. We characterized mass transfer rates in terms of the fract...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017